
CMVision and Color Segmentation

CSE398/498 Robocup

19 Jan 05

Announcements

• Please send me your time availability for working

in the lab during the M-F, 8AM-8PM time period

Why Color Segmentation?

• Computationally inexpensive (relative to other

features)

• “Contrived” colors are easy to track

• Combines with other features for robust tracking

Target Tracking Demo

Color Tracking Demo

Image Representation

Let’s Start with B&W Images

• These are referred to as

grayscale or gray level

images

• Corresponds to

achromatic or

monochromatic light

• Light “devoid” of color

• Also results from equal

levels of R-G-B in an

image

Image Representation

Image Representation

61 29 29 57 199 192
222 200 197 135 167 222
203 203 203 137 137 165
208 208 201 124 142 111
208 203 200 190 127 92
204 201 200 218 173 139

It’s just a bunch of NUMBERS!

Digital Image Representation

(0,0)

y

x

• Images are

contiguous blocks of

numbers in computer

memory

• We will manipulate

these numbers to get

them into a useful

form

Digital Image Representation (cont’d)

• Several properties define the image format

– Pixel (or spatial) Resolution (e.g. 640x480 pixels)

– Pixel bit-depth (8-bit unsigned, 16-bit signed, etc.)

– Frame rate (e.g. 30 Hz)

– Colorspace (RGB, YCbCr, etc.)

– Number of planes - 1 for grayscale images, 3 for color

– Pixel format (planar vs. packed)

R G B R G B… R G B

R R … R G G … G B B … B You MUST know ALL
of these or you will have
processed GARBAGE!

• Corresponds to achromatic or monochromatic light

(without color)

• Typically 8-bit unsigned chars with a dynamic range of

[0,255]

• One char corresponds to one image pixel

255),(0 ≤≤ yxI

Grayscale Images

RGB Color Space

• Motivated by human visual system

– 3 color receptor cells (cones) in the retina with

different spectral response curves

• Used in color monitors and most video cameras

RGB Image Formation in Cameras

• Most video cameras use RGB space

• Expensive variants use 3 CCDs, each with a filter for the

respective wavelength of light

• More common variants (like what we will use) have a

single CCD

• Q: How do they reproduce color?

• A: A Filter!

The Bayer Filter

• Color is generated for the whole CCD by interpolating

neighbor values

• The image we get has already undergone a “lossy

compression”

• Based upon the observation that

human vision is much more

responsive to green light than

red or blue

• Half the pixels in the CCD are

allocated to green, ¼ to red and

¼ to blue

RGB Image Format

• Images pixels can be either planar or packed

format

• Planar format separates the colors into three

contiguous arrays in memory

• Packed alternate R->G->B->R->… in memory

Packed

Planar

Representing Colors in an RGB Image

Red Green Blue

How do we segment a “single” color?

Sample set for orange hat

• We need to model is mathematically a priori

• In other words, the robot needs models of colors it is

looking for in its memory

Simple RGB Color Segmentation

)1.1,5.254(== σµ)8.14,6.103(== σµ)07.6,1.45(== σµ

256),(251 << yxIR 135),(73 << yxIG 58),(32 << yxIB

Red Green Blue

& &

Segmented
Color Image

Issue of
Thresholding!

Segmentation Issues

• The approach surrounds the color with a prism

• This captures the color, but also many other colors that

are not of interest

• Remember, each POINT represents a unique color

Implementation is Important!

• Recall that we “only” have a 567 MHz, so the

implementation is important

• What’s wrong with the following code segment (the RGB

pixel values are imR, imG, imB respectively):

• Better would be:

• So the segmentation can be reduced to a series of logical

operations

if(imR<=rMax && imR>=rMin && imG<=gMax && imG>=gMin && imB<=bMax && imB>=bMin)
x=1;

else
x=0; Conditional Branch is a control hazard!

Could result in a flushed pipeline!!!

x = imR<=rMax && imR>=rMin && imG<=gMax && imG>=gMin && imB<=bMax && imB>=bMin;

But we have Many colors to segment…

* www.robocup.org

CMVision Color Segmentation

• James Bruce et al, IROS 2000

• The main ideas:

– Use lookup tables (LUT) to store colors

– Since color membership is based on binary logical

operations, represent colors at the bit level

– For an integer based LUT, this allows the segmentation of up

to 32 colors in parallel

– Since the LUTs are small, they will can be contained in the

cache for improved performance

CMVision Color Segmentation (cont’d)

x = imR<=rMax && imR>=rMin && imG<=gMax && imG>=gMin && imB<=bMax && imB>=bMin;

• We want to convert this into a LUT. Assume for now that

the pixel depth is 4 bits

• Let’s say the valid range of colors for a ball are:

• We can write these as the following LUTs:

int inRed[16] = {1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0};

int inGreen[16] = {0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0};

int inBlue[16] = {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1};

153

98

60

≤≤
≤≤

≤≤

blue

green

red

CMVision Color Segmentation (cont’d)

x = imR<=rMax && imR>=rMin && imG<=gMax && imG>=gMin && imB<=bMax && imB>=bMin;

• Now we can express

as:

• This is the whole point of LUTs – increase speed at the

cost of memory

• Notice that testing whether an image pixel is a member of

a color requires only a single bit (0/1) representation

• Use this to embed multiple colors in the LUT and segment

them in parallel

x = inRed[imR] && inGreen[imG] && inBlue[imB]

CMVision Color Segmentation (cont’d)

• Lets consider two colors:

int inRed1[16] = {1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0};

int inGreen1[16] = {0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0};

int inBlue1[16] = {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1};

int inRed2[16] = {0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0};

int inGreen2[16] = {0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0};

int inBlue2[16] = {0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0};

• We can combine these into a single LUT

int inRed[16] = {1,1,1,1,1,3,3,0,0,0,0,0,0,0,0,0};

int inGreen[16] = {0,0,0,0,0,0,2,2,3,3,0,0,0,0,0,0};

int inBlue[16] = {0,0,0,1,1,1,3,3,3,3,3,3,3,1,1,1};

CMVision Color Segmentation (cont’d)

• Lets consider two colors:

int inRed1[16] = {1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0};

int inGreen1[16] = {0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0};

int inBlue1[16] = {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1};

int inRed2[16] = {0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0};

int inGreen2[16] = {0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0};

int inBlue2[16] = {0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0};

• We can combine these into a single LUT

int inRed[16] = {01,01,01,01,01,11,11,00,00,00,00,00,00,00,00,00};

int inGreen[16] = {00,00,00,00,00,00,10,10,11,11,00,00,00,00,00,00};

int inBlue[16] = {00,00,00,01,01,01,11,11,11,11,11,11,11,01,01,01};

The first color is
embedded in the LSB.

The next color is
in the next bit

CMVision Color Segmentation (cont’d)

• Now we can express

as:

• Note that the logical operations are now done at the BIT

level

• Thus, we test a pixel against n colors (for an n-bit word)

in parallel!

• The only negative is that since we are representing colors

by prisms, it will be difficult to find that many that don’t

overlap.

x = inRed[imR] && inGreen[imG] && inBlue[imB]

x = inRed[imR] & inGreen[imG] & inBlue[imB]

CMVision Segmentation Example

Raw Image Segmented Image

* http://www-2.cs.cmu.edu/~jbruce/cmvision/

An Alternate Segmentation Approach 1

• Bound the color with a rectangle at a

color/grayscale level

• Much less conservative in that it lets in less

“invalid” pixels, but still conservative

• Fast implementations employ bit-based LUT to

segment multiple colors in a single pass

A Layered Bounding Rectangle Approach

• Example: For each level of blue, bound the red &

green levels from above and below:

Blue = 0 Blue = 255…

Red Red

GreenGreen

rmax

rmin

rmax

rmin

gmin gmaxgmin gmax

2D LUT

• We will now have 2, two-dimensional LUTs:

int blueRed[16][16] = {{1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0},…,

{0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0}};

int blueGreen[16][16] = {{0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1},…

{0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0}};

• Our test now becomes

where we again use a bitwise representation for color

membership

• Only negative is the growth of the LUT by O(n) – but still

small enough to be very fast

x = blueRed[imB][imR] & blueGreen[imB][imG]

Alternate Segmentation Approach 2

• Bound the color with a three-dimensional solid

• Best color representation

• Requires a 3D LUT, which for even an 8-bit LUT

depth is > 16 MB

YCbCr Color Space

“Greyscale”
Y= 0.30*R+0.59*G+0.11*B

 .conversion possible One *

128

128

0

082.0419.0500.0

500.0331.0169.0

114.0587.0299.0

+

−−
−−=

B

G

R

Cr

Cb

Y

• Human eye more responsive to brightness changes than

color changes

• Separates luma (“brightness”) from the chroma (“color”)

channels

• Basis for US television signal (related to YUV/YIQ formats)

– Allows for the transmission of B&W images

• Image format for Aibos

YIQ Image Format

• Images can be either planar or packed format, but

normally is packed

• Alternates U1->Y1->V1->Y2->U2->Y3->V2->Y4

• Every 2 Y pixels share a Cb and Cr

• Sub-sampled horizontally

• 4 bytes/2 pixels vs. 6 bytes for RGB24

• Separation of the luminance helps in color

segmentation (sometimes)

An Alternate Segmentation Approach 1

• Bound the color with a rectangle at a

color/grayscale level

• Much less conservative in that it lets in less

“invalid” pixels, but still conservative

• Fast implementations employ bit-based LUT to

segment multiple colors in a single pass

Summary

• Colors are easily segmented from images

• Need to be characterized a priori

• Color is the perception of reflected light in a scene

• Perception is strongly tied to illumination levels

• Formats of interest for us are RGB and YCbCr

• Often combined with other feature detectors for robust

tracking

• Efficient implementation is important

• Tradeoffs between speed, memory use and accurate color

representation: “There is no free lunch”

Next Time…

• Review of edge detection for line segmentation

* www.robocup.org

